First semestral backpaper exam 2011 B.Math. (Hons.) IInd year Algebra III — B.Sury Answer any FIVE questions.

Q 1. Prove that $\mathbf{Z}[i]$ is a PID.

Q 2. Let A be a commutative ring with unity and $f \in A[X]$. If f is a zero divisor, prove that there exists $0 \neq a \in A$ such that af = 0.

Q 3. Let I_1, \dots, I_n be ideals of a commutative ring A with unity. If P is a prime ideal of A containing the product $I_1I_2 \cdots I_n$, then show that P contains I_i for some i.

Q 4. Prove that all ideals of $\mathbf{Z}[X]$ are finitely generated.

Q 5. Let θ : $\mathbf{C}[X, Y] \to \mathbf{C}[T]$ be the ring homomorphism given by $X \mapsto T^2, Y \mapsto T^3$. Prove that Ker $\theta = (X^3 - Y^2)$.

Q 6. Let $A = \{a/b \in \mathbf{Q} : b \text{ odd }\}$. Consider **Q** as an *A*-module. Show that the unique maximal ideal *m* of *A* satisfies $m\mathbf{Q} = \mathbf{Q}$. Why does this not contradict the Nakayama lemma.

Q 7. Given a matrix $M \in M_n(K)$, where K is a field, what is meant by its rational canonical form? Further, by assuming the existence of the rational canonical form, compute the characteristic polynomial of M.